Boundedness of functions in fractional Orlicz–Sobolev spaces

نویسندگان

چکیده

A necessary and sufficient condition for fractional Orlicz–Sobolev spaces to be continuously embedded into L∞(Rn) is exhibited. Under the same assumption, any function from relevant fractional-order shown continuous. Improvements of this result are also offered. They provide optimal Orlicz target space, rearrangement-invariant space in embedding question. These results complement those already available subcritical case, where fails. augment a classical theorem standard Sobolev spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of KKT Multipliers in fractional programming problem using convexificators

‎In this paper, using the idea of convexificators, we study boundedness and nonemptiness of Lagrange multipliers satisfying the first order necessary conditions. We consider a class of nons- mooth fractional programming problems with equality, inequality constraints and an arbitrary set constraint. Within this context, define generalized Mangasarian-Fromovitz constraint qualification and sh...

متن کامل

Boundedness of linear order-homomorphisms in $L$-topological vector spaces

A new definition of boundedness of linear order-homomorphisms (LOH)in $L$-topological vector spaces is proposed. The new definition iscompared with the previous one given by Fang [The continuity offuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997)829$-$838]. In addition, the relationship between boundedness andcontinuity of LOHs is discussed. Finally, a new uniform boundednessprincipl...

متن کامل

Boundedness of the Fractional Maximal Operator in Local Morrey-type Spaces

The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Boundedness of Biorthogonal Systems in Banach Spaces

We prove that every Banach space that admits a Markushevich basis also admits a bounded Markushevich basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2023

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2023.113231